<img alt="" src="https://secure.hims1nice.com/150891.png" style="display:none;">

Die Casting News

Squeeze Casting: Part One

Posted by Hill and Griffith Company on Oct 14, 2020 1:36:07 PM

Excerpt from the June 2007 TotalMateria.com article.

Squeeze casting as liquid-metal forging is a process by which molten metal solidifies under pressure within closed dies positioned between the plates of a hydraulic press.
The applied pressure and instant contact of the molten metal with the die surface produce a rapid heat transfer condition that yields a pore-free fine-grain casting with mechanical properties approaching those of a wrought product. The squeeze casting process is easily automated to produce near-net to net shape high-quality components.

The process was introduced in the United States in 1960 and has since gained widespread acceptance within the nonferrous casting industry. Aluminum, magnesium, and copper alloy components are readily manufactured using this process. Several ferrous components with relatively simple geometry, for example, nickel hard-crusher wheel inserts-have also been manufactured by the squeeze casting process.

Squeeze Casting Illustration

The squeeze casting process, combining the advantages of the casting and forging processes, has been widely used to produce quality castings. Because of the high pressure applied during solidification, porosities caused by both gas and shrinkage can be prevented or eliminated. The cooling rate of the casting can be increased by applying high pressure during solidification since that contact between the casting and the die is improved by pressurization, which results in the foundation of fine-grained structures.

Macro segregation has been known to be easily founded in most squeeze castings, which leads to non-uniform macrostructures and mechanical properties. It is generally considered that pressurization during solidification prevents the foundation of shrinkage defects. However, it enhances the foundation of macro segregates in squeeze castings of aluminum alloys. Foundation of macro segregates in castings or ingots has been reported to be caused by interdendritic fluid flow, which is driven by solidification contraction, differences in density, etc.

With the current emphasis on reducing materials consumption through virtually net shape processing and the demand for higher-strength parts for weight savings, the emergence of squeeze casting as a production process has given materials and process engineers a new alternative to the traditional approaches of casting and forging. By pressurizing liquid metals while they solidify, near-net shapes can be achieved in sound, fully dense castings.

Squeeze casting is simple and economical, efficient in its use of raw material, and has excellent potential for automated operation at high rates of production. The process generates the highest mechanical properties attainable in a cast product. The microstructural refinement and integrity of squeeze cast products are desirable for many critical applications.

Squeeze Casting Macro Structures

 

As shown in Fig. 1, squeeze casting consists of entering liquid metal into a preheated, lubricated die and forging the metal while it solidifies. The load is applied shortly after the metal begins to freeze and is maintained until the entire casting has solidified. Casting ejection and handling are done in much the same way as in closed die forging. There are a number of variables that are generally controlled for the soundness and quality of the castings.

Casting Parameters

Casting temperatures depend on the alloy and the part geometry. The starting point is normally 6 to 55°C above the liquidus temperature.

Tooling temperatures ranging from 190 to 315°C are normally used.

Time delay is the duration between the actual pouring of the metal and the instant the punch contacts the molten pool and starts the pressurization of thin webs incorporated into the die cavity.

Pressure levels of 50 to 140 MPa are normally used.

Pressure duration varying from 30 to 120s has been found to be satisfactory for castings weighing 9 kg.

Lubrication. For aluminum, magnesium, and copper alloys, a good grade of colloidal graphite spray lubricant has proved satisfactory when sprayed on the warm dies prior to casting.

Read More

 

 

Tags: Die Casting, Squeeze Casting Release Agents, Die Casting Lubricants, Die Casting Lubricant, Die Casting Process, die casting lubricant management, Squeeze Casting, TotalMateria.com


 

Hill and Griffith Customer Service

We're known for our hands-on approach. Let us visit your plant, offer die casting technical support and recommend release agents, lubricants, plunger lubricants and permanent mold lubricants that suit your needs. Products that represent the latest in technology and ongoing research that enhance competitiveness and increase productivity. 

Hill and Griffith Samples

Product Samples

We are pleased to provide samples in quantities large enough to allow you to "try before you buy." Die Casting and Squeeze Lubricants- Diluco®, Permanent Mold Coatings- Concote™, Plunger Lube™- Graphite and non-graphite oils and pastes with excellent anti-wear properties, Casting Operations Products: Start-up lubes, Ladle coatings, Anti-soldering pastes, Water glycol, Trim press lubricants, Surface protection for casting storage, Corrosion protection for die storage, Cleaners for machines and dies, Corrosion protection for machines, Heat treatment quenchants, and Heat-transfer fluids. Also, Industrial Lubricants Griflube®, Hydraulic fluids with fire-resistant and anti-wear properties, Bio-Syn natural ester-based hydraulic fluid, Way oil knuckle lubes and Metalworking Fluids- Grifcut™

Contact us for Product Samples

Hill and Griffith Customer Service

Technical Services & Support

On-site process surveys, Casting defect investigations, Product testing, Tooling start-ups and Statistical process controls and much more. Also, lab facilities are available to provide testing upon request. 

Contact us to Arrange a Visit

Bulletins and Technical Papers for Die Casting Products

Subscribe to Die Casting News

Die Casting News

Follow Us

Diecasting News Categories

see all