Article excerpt from the June 2019 issue of Modern Machine Shop by Timothy Simpson
According to the American Foundry Society, metal castings can be found in 90% of all durable goods, and you are seldom more than 10 feet away from a casting. I didn't believe it at first, but if nearly every car, truck, train, tractor or construction vehicle has a casting in it, not to mention all the castings found in our infrastructure (buildings, pipelines, etc.), then you understand why that number is so high.
So, how is additive manufacturing (AM), one of the newest manufacturing methods, disrupting metal casting, the oldest manufacturing method? It is pretty simple actually, and it goes along the lines of what we have been discussing recently, namely, hybrid manufacturing approaches in which AM is being used to create the fixtures, jigs, and/or tools (in this case, sand molds and cores) that are then used to manufacture parts by conventional means (in this case, metal casting). In fact, 3D sand printing is probably one of the easiest and least risk ways of integrating AM into production. We know how casting works; all we are doing is finding a faster and cheaper way to make the molds for them, and then we cast and finish components like we have been doing for hundreds of years.
For casting, the AM process of choice is binder jetting – a process in which a liquid binder is used to "glue" material together layer by layer to create a part. In this case, the material that is being 3D printed is sand, the binder is foundry-grade resin and the part is the sand mold or mold core. A part is designed in CAD as usual, but instead of turning it into a pattern, the 3D solid model is inverted to make a negative of the part. Then risers, sprues, runners and gates are added, and the resulting 3D solid model is of the mold itself, which is then 3D printed using binder jetting.
Binder jetting systems are readily available in the market right now. While many options exist, ExOne and Voxeljet offer binder jetting systems specifically tailored for 3D sand printing. Meanwhile, newer entrants like Viridis3D from EnvisionTEC combine robotic arms and binder jetting technology to print molds and cores as well as investment casting patterns.
At a cost of $0.10 to $0.15 per cubic inch, binder jetting sand molds and cores for metal casting is probably the most cost-effective AM process on the market right now. Add to that the speed with which a sand mold can be printed, not to mention the time savings from not making patterns, and the business case for metal casting with 3D sand printing is radically different. New designs for cars, trucks and construction vehicles can now be rapidly prototyped and iterated using functional components made via 3D sand printing, not to mention the more complex geometries that this form of hybrid manufacturing enables.
Additional News from Modern Machine Shop
Sand 3D Printing Expands Options for Metal Casting
Hill and Griffith Customer Service
The Hill and Griffith Company's green sand metal casting foundry supplies help achieve the EPA's M.A.C.T. standards and reduce Benzene emissions. Our variety of environmentally sound release agents, coatings, partings, lubricants, core oils and specialty products will help you meet your metal casting's needs. We're known for our hands-on approach. Let us visit your plant and recommend products that suit your needs.
We are pleased to provide samples in quantities large enough to allow you to "try before you buy."
Contact Us »
Technical Services & Support
On-site casting defect investigations, product testing, machine start-ups and much more. Also, lab facilities are available to provide testing upon request.
Contact Us »